linux-presets/gui/gnome/autocustom-gnome-macos/res/extensions/CoverflowAltTab@palatis.blo.../effects/glitch_effect.glsl

109 lines
3.3 KiB
GLSL
Executable File

//
// Description : Array and textureless GLSL 2D simplex noise function.
// Author : Ian McEwan, Ashima Arts.
// Maintainer : stegu
// Lastmod : 20110822 (ijm)
// License : Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https://github.com/ashima/webgl-noise
// https://github.com/stegu/webgl-noise
//
uniform sampler2D tex;
uniform float time;
vec3 mod289(vec3 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec2 mod289(vec2 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec3 permute(vec3 x) {
return mod289(((x*34.0)+1.0)*x);
}
float snoise(vec2 v) {
const vec4 C = vec4(0.211324865405187, // (3.0-sqrt(3.0))/6.0
0.366025403784439, // 0.5*(sqrt(3.0)-1.0)
-0.577350269189626, // -1.0 + 2.0 * C.x
0.024390243902439); // 1.0 / 41.0
// First corner
vec2 i = floor(v + dot(v, C.yy) );
vec2 x0 = v - i + dot(i, C.xx);
// Other corners
vec2 i1;
//i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0
//i1.y = 1.0 - i1.x;
i1 = (x0.x > x0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0);
// x0 = x0 - 0.0 + 0.0 * C.xx ;
// x1 = x0 - i1 + 1.0 * C.xx ;
// x2 = x0 - 1.0 + 2.0 * C.xx ;
vec4 x12 = x0.xyxy + C.xxzz;
x12.xy -= i1;
// Permutations
i = mod289(i); // Avoid truncation effects in permutation
vec3 p = permute( permute( i.y + vec3(0.0, i1.y, 1.0 ))
+ i.x + vec3(0.0, i1.x, 1.0 ));
vec3 m = max(0.5 - vec3(dot(x0,x0), dot(x12.xy,x12.xy), dot(x12.zw,x12.zw)), 0.0);
m = m*m ;
m = m*m ;
// Gradients: 41 points uniformly over a line, mapped onto a diamond.
// The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287)
vec3 x = 2.0 * fract(p * C.www) - 1.0;
vec3 h = abs(x) - 0.5;
vec3 ox = floor(x + 0.5);
vec3 a0 = x - ox;
// Normalise gradients implicitly by scaling m
// Approximation of: m *= inversesqrt( a0*a0 + h*h );
m *= 1.79284291400159 - 0.85373472095314 * ( a0*a0 + h*h );
// Compute final noise value at P
vec3 g;
g.x = a0.x * x0.x + h.x * x0.y;
g.yz = a0.yz * x12.xz + h.yz * x12.yw;
return 130.0 * dot(m, g);
}
float rand(vec2 co) {
return fract(sin(dot(co.xy,vec2(12.9898,78.233))) * 43758.5453);
}
void main() {
vec2 uv = cogl_tex_coord_in[0].st;
float t = time * 2.0;
// Create large, incidental noise waves
float noise = max(0.0, snoise(vec2(t, uv.y * 0.3)) - 0.3) * (1.0 / 0.7);
// Offset by smaller, constant noise waves
noise = noise + (snoise(vec2(t*10.0, uv.y * 2.4)) - 0.5) * 0.15;
// Apply the noise as x displacement for every line
float xpos = uv.x - noise * noise * 0.25;
if (xpos < 0.0)
xpos = -xpos;
if (xpos > 1.0)
xpos = 1.0 - xpos;
cogl_color_out = texture2D(tex, vec2(xpos, uv.y));
// Mix in some random interference for lines
cogl_color_out.rgb = mix(cogl_color_out.rgb, vec3(rand(vec2(uv.y * t))), noise * 0.3).rgb;
// Apply a line pattern every 4 pixels
if (floor(mod(gl_FragCoord.y * 0.25, 2.0)) == 0.0)
{
cogl_color_out.rgb *= 1.0 - (0.15 * noise);
}
// Shift green/blue channels (using the red channel)
cogl_color_out.g = mix(cogl_color_out.r, texture2D(tex, vec2(xpos + noise * 0.05, uv.y)).g, 0.25);
cogl_color_out.b = mix(cogl_color_out.r, texture2D(tex, vec2(xpos - noise * 0.05, uv.y)).b, 0.25);
}